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Representing Tensors
(a.k.a. multiway arrays)



Order

e Second-order tensor A = (aij) c R11Xn2

e Third-order tensor A = (a;;;) € R"1712%"3




Some Relations to Linear Algebra

e [ensors as matrices

e [ensors as vectors

e Norms, inner products, outer products



Turning Tensors into Matrices

Three ways to cut a ‘“cube’:

1. Left-right

2. Front-back

3. Top-bottom




Unfolding Matrices*

A-

Ay = ‘sides”
Ay = “front-back” [transposed]
Ay = “top-bottom” [transposed]

*De Lathauwer, De Moor, Vandewalle (2000)



The vec and reshape Operators

z € R™" = reshape(z,m,n) € R™*"

Example: m =3, n=25

reshape(z,3,5) =

7 € RM™*" = vec(Z) = reshape(Z, mn, 1)
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Turning Tensors into Vectors

A € RPXM2XN3 = yec(A) € R™M1M2"3

Example: For n = 2,

alii
anz11
a121
a
vec(A) = aii;
az12
a122
a222 |




Unfoldings in Matlab

The s-th unfolding matrix of an order-p tensor can be expressed
in terms of vec and reshape:

Example:

“A(s) = reshape(reshape(vec(A),n? =%, n*)T n,nP~1)"

(can be adjusted for unequal dimensions)

Example: nq1 X no X n3 third-order tensor:

“Ao) = reshape(reshape(vec(A), n1,non3)’, no, nang)”



Caution about notation
The explicit combination of vec and reshape in
"A(g) = reshape(reshape(vec(A), nP"?, n) n,nP~1)"
depends on how the unfoldings are defined.

Example: Using DDV* unfoldings,

al111 a1i1i1

a211 a112

a121 a121

__lao21 ]%WWMM&MOH\ ai1oo
VeC(J4) al112 a211
a212 az12

a122 an21

_a222_ _a222_

*De Lathauwer, De Moor, Vandewalle (2000)



Subtensors in Matlab

If
then
AG, 1) = ajlil ai21 .
a211 a221
However,

A(L,:,) £ [alll allQ]

aj21 ai22

but rather the 1 x 2 x 2 tensor: [alll alzl} [a,112 a,122}



Block Representations

A matrix of scalars, A = (aij), can be regarded as a “matrix with
matrix entries” (block matrix)

A tensor of scalars, A = (ainl...z‘np)' can be regarded as a “matrix
with tensor entries”

Example: Order-5 tensor:

A1 Aio
Az Ao

“‘second-order with third-order entries”



Norms and Inner Products

If A,B ¢ R"1xXn2xn3 then the inner product is

ny n2 n3g
<AB> = ) > > aj- bk
i=1j=1k=1

= vec(A)! - vec(B)

A Frobenius norm, ||A||, is

A = Al p = /< 4, A >

Other norms?



Outer Product and Rank-1 Tensors

If z € R™, y € R™2 then the outer product, yz!, is a rank-1 matrix.

Note

vec(yz!) & z®uy

More generally, if x,y, z are vectors,

rRYRz

is a rank-1 tensor.



Sums of Rank-One Matrices

IfA:UEVT,U:[ul un],vz[vl ... vp|, then

n o n
A= Z Z aijuivf
( =

=159=1

that is,

n

; > 0i(vj @ ;)

=1

vec(A)

= (V®U) - vec(X)



where

Sums of Rank-One Tensors

vec(A)

n n
> >
i=1;j=1

n
> 0w ® v @ u;)
k=1

= (WRVU)-vec(l)
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Repeated Change of Basis

If
vec(A) = > > > bijp(wr ®v; @ uy)
i j Kk
vec(B) = D > > cpip(wy ® 05 @ ;)
i j k
Then
vec(A) =

YD (Wi, @ Vi @ Ut;)
ik

= WWeVVUU) - vec(C)



Connections between the unfoldings of 4 and Y

vec(A) = (W RV RU) - vec()
T

A(l) = UE(l)(V(X)W)T

A(2> VE(Q)(W & U)T

A(3> = WE(3)(U®V)T



n-mode Products

Let A € RMXnxP

matrix x matrix

matrix x vector

[unfolding] [vec]
Bl c Raxm | " A X1 B]_” B]_ . A(l) (I X B]_) . vec(A(l))
(g x n x p)
BQ c RIXM | " A X o BQH BQ . A(Q) (I %9 BQ) . vec(A(Q))
(m x g X p)
B3 c RIXP | " A X3 B3” B3 . A(3) (I 024 B3) . vec(A(3))

(m xnxq)




Tensor Rank Concepts



General Tensor Rank

Tensor rank of A € R"1X1"2X713 js the minimum number of rank-1
tensors that sum to A in linear combination.

If a tensor A has a minimal representation as:

ry 2 13

vec(A) = ) > > opr(wp ®@v; ®uy)

i=17=1k=1

then rank(A) = rqyrors



Why is Tensor Rank Important?

e Enables data compression

e Identifies dependencies in data

Applications, multilinear algebra theory, and computational
realities all have ‘“something to say’” about the tensor rank issue.



Eight Facts about Tensor Ranks

. Minimum tensor representation not necessarily orthogonal

. Different orthogonality requirements result in different mini-
mal representations (Kolda, 2001)

. Ranks in different dimensions not always equal

(De Lathauwer, De Moor, Vandewalle, 2000)

. Tensors can't always be “diagonalized”



Eight Facts about Tensor Ranks (continued)

. Maximum tensor rank unknown in general

. No known method to compute the “minimum’” tensor repre-
sentation

.k successive rank-1 approximations to tensors do not neces-
sarily result in the best rank-k approximation
(Zhang and Golub, 2001; Kolda, 2001,2003)

. Set of rank-deficient tensors has positive volume (Kruskal, 1989)



Rank Analogy with Matrices

Matrices A € R*X"

vec(A) = i i oij(v; ® u;)

i=1 j=1

Y

[orthogonal decomposition]

r

vec(A) = Z oi(vi ® u;)

=1

where rank(A) =r

TRUE

Tensors A € RXnXn

vec(A) = S: S: S: oijk(wr @ v ® u;)

i=1 j=1 k=1

U

[orthogonal decomposition]

T

vec(A) = Z oi(w; ® v; @ u;)

1=1

where rank(A) =r

FALSE (most of the time)



Notions of Orthogonality (kolda, 2001)

n

vec(A) = Z o;(w; ® v; @ u;)
1=1

1. Complete Orthogonal Decomposition:. for +,5 =1,...

’LLZJ_’LL] and ”UZ'J_”UJ' and ’LUZJ_’LU]

2. Strong Orthogonal Decomposition:. for 1,7 =1,...,n

u; L U or u; = :|:’LL]
v; L Vj or V; = :|:’U]
w; L W or w; = :I:wj

3. Orthogonal Decomposition. for 1,7 =1,...,n

’LLZJ_’LL] or ”UZ'J_”UJ' or ’LUZJ_’LU]



Orthogonality and Rank *

If the rank-1 tensors (w; ® v; ® u;) are { orthogonal } i

strongly orthogonal

Tr

vec(A) = Z o;(w; ® v; ® uy)
1=1

orthogonal

and r is minimal, then the
strong orthogonal

} rank of A is r.

*Kolda, 2001



Orthogonality and Rank (continued)

If the rank-1 tensors (wy ® v; ® u;) are completely orthogonal in

vec(A) = > > > oyn(w,@vj®uy)

i=1j=1k=1

and r is minimal, then the combinatorial orthogonal rank of A is

T.



More Rank Concepts*

For an order-p tensor, compute rank of each unfolding matrix:

n-rank of A = rank(A(n))

Relationship to tensor rank:

n-rank < rank

*De Lathauwer, De Moor, Vandewalle, 2000



Matrix Rank vs. Tensor Ranks

e Matrices: rank, orthogonal rank, strong orthogonal rank, and
combinatorial rank are all equal

e Jensors: different ranks are not necessarily equal and the
associated decompositions are not unique



Matrix Rank vs. Tensor Ranks (continued)

e Matrices: the n-ranks correspond to the column and row
rank of the matrix and hence are equal

e [ensors: the different n-ranks are not necessarily equal and
even if they are, they do not necessarily equal the tensor rank



Diagonalizeable Tensors

Suppose A can be written as a completely orthogonal decompo-
sition:
n

vec(A) = ) oi(w; ® v; @ u;)
1=1

T hen

e All ranks with different orthogonality constraints are equal

e Lk successive rank-1 approximations compute the best rank-k
approximation (Zhang and Golub, 2001)



Other Special Structures to Explore

Supersymmetric tensors

A € R*1xn2xn3 where nqi,no >> n3 (thin tensors)

Bandedness?

Toeplitz?

Block algorithms?



Thinking About Rank

e How does knowledge of rank help in applications?

e How do the different notions of rank and orthogonality help
explain correlations in data?

e Can we overcome the rank problem by instead working to
“‘compress’ entries of a tensor?



Numerical Rank

Tricky even in matrix case!

r

vec(A) = ) 0i(v; ® uy)
i=1
where

0'120'22"'20'?“>>0'r-|-1Z"'>0'n

How to determine »7

Numerical rank problems with tensors?



Algorithms
and

SVD Generalizations



Solution Paradigm: Component-wise Linearization

Problem:

2
min fla —w®v®ulp

Repeat:
Hold w, v constant, solve for u

Hold w,u constant, solve for v
Hold v, u constant, solve for w

“Alternating Least Squares”



Best Rank-1 Idea

Problem:.
,m)[g})lla—a(w®v®u)|l% st ull = [jv]| = |lwl]| =1
)
max a’ (wgvew) st |ull = o] = v =1

)

LLagrange Multipliers:
ou = Ary(v@w)
ov = A (u @ w)
cw = Aga) (u ® v)

c = adl(weveu)



Higher-Order Power Method *

Alternating Least Squares:

Solve for o,u given v,w and iterate:

~

U < A(l)(v ® w)

~

o — |[uf

Q| &

*De Lathauwer, De Moor, Vandewalle, 2000



Generalized Rayleigh Quotient Iteration *

Recall the Lagrange equations:

ou = A(l)(fu ® w)
ov = A(Q) (u @ w)
ow = A(3) (u ® v)

GRQ=0 = al(w@v®u)

Linearize using Newton’'s Method and iterate

*Zhang and Golub, 2001



Successive Rank-1 Approximations

Step k:
k
r—a— Y oi(w; ®v; @ uy)
i=1
Solve

T
max (w®vRu)

subject to required orthogonality constraints

Note: Only computes minimal decomposition if tensor is
“diagonalizeable” *

*Zhang and Golub, 2001; Kolda, 2001



EXxisting Algorithms

e CANDECOMP-PARAFAC*

e TUCKERT

Implemented in N-way Toolbox in Matlab¥

*Carroll and Chang, 1970; Harshman, 1970

"Tucker, 1966
tAndersson and Bro, 2000



CANDECOMP-PARAFAC

Finds general decompositions of the form

n

vec(A) = > (w; ® v; @ uy)
1=1

using ALS on unfolding matrices.
Example:

If V,W fixed, then U is found using LS, where

1 0O

7T T = O O
A(l)_UI(V®W) and I_[O 00 1

forn =2



TUCKER

Finds decompositions of the form

n n n

vec(A) = > Y M oiik(Wwr @ v; @ u;)

i=1j=1k=1

using ALS on unfolding matrices (SVD solution at each step)



SVD Generalization (TUCKER3)*

Orthogonal representation involves computing SVDs of the un-
folding matrices of A:

Ay = UD1G] Yy = D1GL(VeW)
Agy = VDyG% Yoy = DQG (W U)

T hen

A) ULy (Veow)!
Ay VI (W U)!
Ay = WX U V)!

*De Lathauwer, De Moor, Vandewalle (2000)



SVD Generalization®

Matrices A € R*xn

A=Uxv?T

) =diag(o1,...,0n)

[row/colum vectors mutually orthogonal]

Tensors A € RPxnxn
A1y UXy(Vow)t
A(2) VI (WUt
Agy = WXz U V)T

Cuts of Y mutually orthogonal

1215 )|p = 2 [[2(n, 5, )|lp =0
[12C L2 220 n, )] >0
[12CLDp 2 220G 5n)[[p >0

*De Lathauwer, De Moor, Vandewalle (2000)



Conclusions

e Representing tensors with linear algebra tools key!

e How do applications need the different tensor ranks?

e Applications need to drive the algorithms



